
LIE ALGEBRA CONFIGURATION PAIRING

BEN WALTER

Abstract. We give a new description of the configuration pairing of [13] by showing that it computes
coefficients in the associative, preLie, or graph polynomial of a Lie bracket expression. We also connect
the graph complexes of [13] with preLie algebras. Examples apply the combinatorial definition of the con-
figuration pairing to compute coefficients in the associative (noncommutative) polynomial of Lie elements.
This outlines a new way of understanding and computing with Lie algebras.

1. Introduction

The configuration pairing of graphs and trees has its genesis in [11] as an explicit geometric description
of the homology/cohomology pairing for configuration spaces. Cycles in the configuration space homology
are realized by [11] as submanifolds, where individual points orbit as systems and galaxies. Cohomology
cocycles check whether certain arrangements of points can ever occur in a homology galaxy. Algebraically,
homology galaxies are written as trees and cohomology cocycles are written as directed graphs. Anti-
symmetry and Jacobi expressions of trees bound, and so vanish in homology; also arrow-reversing and
Arnold expressions of graphs cobound. The homology of configuration spaces is the Poisson operad, so
this gives a model for the Poisson cooperad and an equivalence of Lie coalgebras and directed graphs
modulo arrow-reversing and Arnold. This is exploited in [13], [14], and [15].

In this paper we give an alternate view of the configuration pairing, grounded not in topology but
algebra. Standard operad maps induce a commutative diagram of functors of categories.

(1)

Lie algebras Associative algebras

preLie algebras

Graph algebras

The map from Lie algebras to associative algebras is the universal enveloping algebra map. By analogy,
we call the other maps from Lie algebras also “universal enveloping” maps – the map to preLie algebras
is standard and we will describe the map to graph algebras later. The maps marked � are quotient maps
on algebras. Up to slight tweaks to coalgebra structure, we construct a dual diagram in coalgebras.

The dual maps to Lie coalgebras yield presentations of Lie coalgebras as quotients of graph, preLie, and
associative coalgebras. The duality of Lie algebras with the graph presentation of Lie coalgebras is the
combinatorial pairing of [13]. The duality with the associative coalgebra presentation is given by computing
coefficients in the associative polynomial of a Lie expression. The preLie presentation interpolates between
these two.

Section 2 recalls the classical situation of Lie algebras and universal enveloping associative algebras.
We arrange ideas and notation anticipating our later sections. In the context of associative algebras, the
configuration pairing of a word and Lie bracket expression is the coefficient of the word in the associative
(noncommutative) polynomial of the Lie bracket expression. Material in this section is all classical aside
possibly from the presence of Lie and associative coalgebra structures in Proposition 2.4 and Corollary 2.8.

Date: December 8, 2010.
1991 Mathematics Subject Classification. 17B35; 17B62, 16T15, 18D50.
Key words and phrases. Lie coalgebras, Lie algebras, Associative algebras, preLie algebras.

1

2 B. WALTER

In Section 3 we work analogously to Section 2, but with preLie structures. We spend more time on
preliminaries since we expect this to be less familiar territory. Our construction of Lie coalgebra structures
from preLie structures is similar in motivation to [6], though we work with duals and use the configuration
pairing. In this setting we develop two views of the configuration pairing. The algebraic configuration
pairing is defined similar to Section 2, as reading the coefficient of a preLie element in the preLie polynomial
of a Lie bracket expression. The combinatorial configuration pairing is defined in terms of vertex-labeled
rooted preLie trees and leaf-labeled Lie trees in the spirit of [13].

Section 4 is motivated by the presentation of Lie coalgebras via preLie coalgebras given at the end of
Section 3. This presentation is simplified by replacing preLie algebras by graph algebras. A theory analo-
gous to the previous sections holds for graph algebras. Proofs in this realm are very simple. Furthermore
the structures presented in Sections 2 and 3 are all induced by graph algebra structures via quotient maps
to preLie algebras and associative algebras.

In the appendix we give operad-level constructions and proofs. We also give a description of the full
graph algebra and coalgebra structure, which we omit from Section 4 for simplicity.

Throughout, we will assume that our algebras have underlying k-vector spaces. In particular, we make
frequent use of the free algebra maps from k-vector spaces to algebras. For brevity, we write ⊗ for ⊗k. In
remarks, we discus interpretations of definitions and propositions, given a chosen basis B = {bi}i∈I of a
k-vector space V .

I would like to acknowledge support from the Workshop on Operads in Homotopy Theory in Lille,
August 23-28, and the Istanbul Attaturk Airport. This paper is based on the notes of a talk which was
concieved, developed, and given all during the course of the week-long Workshop on Operads in Homotopy
Theory in Lille. The bulk of this was typed while sitting on the floor of the Istanbul Attaturk Airport,
where I was stuck overnight on my trip home.

2. The Configuration Pairing with Associative Coalgebras

We recall the classical theory of Lie algebras and their universal enveloping algebras, setting notation
for later sections, and carefully developing the linear dual of the universal enveloping algebra map (to avoid
concerns about infinite dimensional coalgebra structures).

Given a k-vector space V , TV =
⊕

n≥1 V
⊗n is the free nonunital associative algebra on V . Write the

word x1 · · ·xn for the element x1 ⊗ · · · ⊗ xn ∈ TV . The universal enveloping associative algebra of a Lie
algebra is UAL = TL/ ∼, where [x, y] ∼ xy − yx. The associative (noncommutative) polynomial of a Lie
element is given by pA : L → UAL, the composition L ↪→ TL � UAL. Write LV for the free Lie algebra
on V and recall the classical isomorphism UALV ∼= TV . We are interested in the map pA : LV → TV and
its dual. Let (TV)∗ and (LV)∗ be the vector space duals of TV and LV .

Remark 2.1. In order to have honest coalgebra structures on duals, some type of finiteness condition must
be enforced. If V is finite dimensional, then we may use the length filtration of TV , requiring ψ ∈ (TV)∗

to satisfy ψ(w) = 0 for all but finitely many lengths of w. If V is not finite dimensional, then we may
choose a basis B, use this to give a basis of TV , and impose a finiteness condition on ψ via this basis.
Alternately we may weaken the definition of coalgebra to allow formal sums in the coproduct operation.
The coproduct operation then lands in the completed tensor product ∆ : C → C ⊗̂ C and the coalgebra
axioms are all modified accordingly.

Throughout this paper, all constructions will be grounded via pairings with algebras. Due to finiteness
conditions on the algebra side, these pairings will never involve infinite sums of nonzero elements, no
matter which of the above alternatives for a specific definition of dual is adopted. Since our goal is an
understanding of algebras via our explicit pairings, we are ambivalent about issues related to infinite
dimensional coalgebras.

Definition 2.2. Define the vector space pairing 〈−,−〉 : (TV)∗ ⊗ LV → k to be 〈ψ, `〉 = ψ
(
pA(`)

)
.

LIE ALGEBRA CONFIGURATION PAIRING 3

Let ηA : (TV)∗ → (LV)∗ be the associated map ψ 7→ 〈ψ,−〉.

Remark 2.3. The map ηA is the dual of pA as a map of vector spaces.
If V has a chosen basis B, then we may canonically write pA(`) as a polynomial of words in the alphabet

B. Furthermore, elements of (TV)∗ are uniquely formal sums of w∗ where w∗(u) = δ(w, u) for w, u words
in B. In this case, 〈w∗, `〉 = w∗(pA(`)) is the coefficient of the word w in the associative polynomial pA(`).

The induced coalgebra structure on (TV)∗ cuts a word at all possible positions ∆w∗ =
∑

w=ab

a∗ ⊗ b∗.

Due to the definition of pA, the map ηA will be a map of coalgebras only after twisting the coalgebra
structure of (TV)∗ to be anti-commutative. Define the cobracket to be]ψ[= ∆ψ − τ∆ψ where τ is the

twist map. On homogeneous elements the cobracket is]w∗[=
∑

w=ab

(a∗ ⊗ b∗ − b∗ ⊗ a∗).

Proposition 2.4. If ψ ∈ (TV)∗ then
〈
ψ, [x, y]

〉
=
∑

i〈αi, x〉 〈βi, y〉, where]ψ[=
∑

i αi ⊗ βi.

Proof. This follows immediately from pA([`1, `2]) = pA(`1)pA(`2) − pA(`2)pA(`1) for homogeneous Lie
bracket expressions `1 and `2. �

By Proposition 2.4 〈−, −〉 is a coalgebra/algebra pairing if (TV)∗ is given the cobracket coalgebra
structure. From now on, we will always equip (TV)∗ with the cobracket coalgebra structure.

Example 2.5. Proposition 2.4 gives a method for recursive calculation of coefficients in pA(`). For example
the coefficient of abbba in pA([[[b, a], b], [a, b]]) is the following.

〈abbba∗, [[[b, a], b], [a, b]]〉 = 〈abb∗, [[b, a], b]〉 〈ba∗, [a, b]〉 − 〈bba∗, [[b, a], b]〉 〈ab∗, [a, b]〉

=
(
〈ab∗, [b, a]〉 〈b∗, b〉 − 〈bb∗, [b, a]〉 〈a∗, b〉

)
(−1)

−
(
〈bb∗, [b, a]〉 〈a∗, b〉 − 〈ba∗, [b, a]〉 〈b∗, b〉

)
(1)

= (1)(−1)− (1)(1) = −2.

An alternate method of computing 〈−,−〉 will follow from our work in Section 3 (see Proposition 3.12 and
Example 3.14).

The map pA to universal (associative) enveloping algebras is an injection by a simple corollary of the
Poincaré-Birkhoff-Witt theorem. Thus Proposition 2.4 has the following corollary.

Corollary 2.6. The map ηA : (TV)∗ → (LV)∗ is a surjection of coalgebras.

Write
〈
ker(]·[)

〉
⊂ (TV)∗ for the smallest coideal of (TV)∗ containing ker(]·[)\V ∗. The following propo-

sition is implied by various classical results; we will give a new, simple proof of it later. (Proposition 2.7
follows immediately from Proposition 3.15; Proposition 3.15 is a direct consequence of Proposition 4.15;
Proposition 4.15 is simple to prove.)

Proposition 2.7. ker(ηA) =
〈
ker(] · [)

〉
. In particular, ker(ηA) is a coideal of (TV)∗.

Corollary 2.8. (LV)∗ ∼= (TV)∗/ ker(ηA) as coalgebras.

Remark 2.9. The idea that (LV)∗ ∼= (TV)∗/
〈
ker(] · [)

〉
is already present in the first section of [10] (and

probably elsewhere in the literature as well), developed using Hopf algebra structures, dual to classical
work of Quillen [7]. The idea that (LV)∗ ∼= (TV)∗/ ker(ηA) (as vector spaces) is contained in the classical
approach to Lie algebras via Lie (or Hall) polynomials – for example [9, §4.2].

It remains to describe ker(ηA) explicitly. Classically
〈
ker(] · [)

〉
is the vector subspace spanned by

shuffles. The shuffle of two words is defined recursively by Sh(a, b) = ab + ba for a, b single letters and
Sh(ω, aυ) = Sh(aυ, ω) =

(
a Sh(υ, ω) + Sh(υ, ω) a

)
for υ, ω generic words. Recall that the (associative)

4 B. WALTER

Lyndon-Shirshov words in an ordered alaphabet [9, §5] [2] are the words which are lexicographically less
than each of their cyclic permutations. By [8] the Lyndon-Shirshov words are a multiplicative basis for the
shuffle monoid. Thus if we choose an ordered basis for V , then the Lyndon-Shirshov words in that basis
are a vector space basis for (TV)∗/ ker(ηA). (Another basis for (TV)∗/ ker(ηA) is given in [15], using the
configuration pairing.)

There are two ways to improve the presentation of (LV)∗ given above. The first is to move away from
associative algebras, since they are often not a convenient location for constructive proofs (see for example
[3, Prop. 22.8] compared to [14, Lemma 2.16]). The second is to find a description of ker(η) not involving
shuffles, since their span is rather complicated. For example, a1a2a3a4a5 − a5a4a3a2a1 is in this span,
even though it is far from being a shuffle; neither is it immediately apparent how to write it as a sum of
shuffles. In particular, using Corollary 2.8 in order to make a construction on (LV)∗ involves making a
construction on (TV)∗ and then showing it is invariant under shuffles. The invariance step is difficult.

Other descriptions of the kernel of ηA follow from our later work in Sections 3 and 4, and are constructed
directly from the map ηA using the configuration pairing rather than via the cobracket.

3. The Configuration Pairing with PreLie Colgebras

3.1. PreLie algebras.

Definition 3.1. A preLie algebra [4] is (P, /) where / : P ⊗ P → P satisfies

(x / y) / z − x / (y / z) = (x / z) / y − x / (z / y).

The name “preLie” comes from the fact that [x, y] = x / y − y / x is a Lie bracket. Note that all
associative algebras are trivially preLie.

Free preLie algebras have a simple combinatorial model [1]. Given a vector space V , the free preLie
algebra on V is the vector space of rooted (nonplanar) trees with vertices decorated by elements of V ,
modulo multilinearity. The algebra structure x / y is given on homogeneous elements by summing over all
possible ways to connect the root of the rooted tree y to any one of the vertices of x. It is straightforward
to show that this satisfies Definition 3.1. Write PV for the free preLie algebra on V , which we view as the
vector space of multilinear vertex-labeled, rooted trees.

Example 3.2. Below we give the preLie operation / combining two rooted trees. We indicate the root of a
tree by writing it as the unique lowest vertex.

a
b c

/
d

e
=

a
b c

d

e

=
a

b c
d

e

+
a

b c
d

e

+
a

b c
d

e

A Lie algebra L has universal enveloping preLie algebra UPL = PL/ ∼ where [x, y] ∼ x / y− y / x. The
preLie polynomial map pp : L → UPL is the composition L ↪→ PL � UPL. It follows from adjointness
properties that UPLV ∼= PV . We are interested in the map pp : LV → PV and its dual.

Example 3.3. Below is pp(`) for two simple Lie bracket expressions.

• [a, b] 7−→
a

b
−

b

a

• [[a, b], c] 7−→
a

b a

b
−

c

− a

b a

b
−

c

=

(

a

b

c

+ a

b c

−
b

a

c

−
b

a c

)
−

(

c

a

b

−
c

b

a
)

LIE ALGEBRA CONFIGURATION PAIRING 5

3.2. PreLie configuration pairing. Write (PV)∗ for the vector space dual of PV . The remark about
infinite dimensional coalgebra structures in the previous section still applies.

Definition 3.4. Define the vector space pairing 〈−,−〉 : (PV)∗ ⊗ LV → k to be 〈φ, x〉 = φ
(
pp(x)

)
.

Let ηp : (PV)∗ → (LV)∗ be the associated map φ 7→ 〈φ, −〉.

Remark 3.5. The map ηp is the dual of pp as a map of vector spaces.
Given a chosen basis B of V , preLie polynomials are pp(`) =

∑
i ci ri where the ri are rooted trees with

vertices labeled from B. If r is a rooted tree with labels from B, then 〈r∗, `〉 is the coefficient of r in pp(`).

The induced coalgebra structure on (PV)∗ is a sum, cutting each edge of a tree in turn to divide it into
two trees, writing (root tree)⊗(branch tree). As before, define the cobracket to be the anti-commutative

twist]r∗[=
∑

e∈E(r)

(rê1)
∗ ⊗ (rê2)

∗ − (rê2)
∗ ⊗ (rê1)

∗, where
∑

e is a sum over all edges of r and rê1, r
ê
2 are the

rooted trees obtained by removing edge e, numbered so that rê1 is the subtree containing the root of r; the
root of rê2 is the vertex formerly incident to e.

The following are proven as in Section 2. [Corollary 3.7 requires knowing pp is an injection, which we
show in the appendix.]

Proposition 3.6. If φ ∈ (PV)∗ then
〈
φ, [x, y]

〉
=
∑

i

〈
αi, x

〉 〈
βi, y

〉
, where]φ[=

∑
i αi ⊗ βi.

Corollary 3.7. The map ηp : (PV)∗ → (LV)∗ is a surjection of coalgebras.

There is an alternate, combinatorial definition of 〈−,−〉. Recall that Lie bracket expressions can be
written as leaf-labeled, rooted, planar binary trees in the following manner. Define the tree associated to
v ∈ V ⊂ LV to be v (the rooted tree with a single leaf decorated by v), and recursively define the tree

associated with a bracket [`1, `2] to be
τ1 τ2

, where τ1, τ2 are the trees associated to `1, `2. Call such trees

Lie trees.

Remark 3.8. The combinatorial definition of the configuration pairing comes from the following two ob-
servations. Let r∗ ∈ (PV)∗ and ` ∈ LV be homogeneous elements written in terms of a chosen basis B of
V . Recursively applying Proposition 3.6 reduces 〈r∗, `〉 to a sum of products of 〈b∗i , bj〉 where the bi are
vertex labels of r and the bj are leaf labels of `. Thus, for 〈r∗, `〉 6= 0 there must be a label-preserving
bijection between the vertices of r and the leaves of `.

Futhermore, iterating the application of Proposition 3.6, the operation of cutting an edge of r corre-
sponds to ungrafting subtrees from `. Thus the edges of r and subtrees of ` should also be bijective. The
subtrees of ` are enumerated by their base vertices, which are the internal vertices of `.

Given two leaves a and b of a Lie tree, write root(a, b) for the internal vertex supporting the smallest
subtree containing both leaf a and leaf b. [Alternately root(a, b) is the internal vertex closest to the root
on the path from a to b. It is also the first common vertex of the paths from a and b to the root.]

Definition 3.9. Let R, T be unlabeled preLie and Lie trees. A bijection σ : Vertices(R)
∼=

−−→ Leaves(T)

induces a map βσ : Edges(R) → {internal vertices of T} by setting βσ

(
a

b
)
= root(a, b).

The σ-configuration pairing of unlabeled preLie trees and Lie trees R and T is given by the following.

(2) 〈R, T 〉σ =

∏

e∈E(R)

sgn
(
βσ(e)

)
if βσ is surjective

0 otherwise

where
∏

e is a product over all edges of R and sgn
(
βσ

(
a

b
))

= ±1 depending on whether leaf σ(a) is left

or right of leaf σ(b).1

1The placement of a below b is intended to indicate that a is the vertex closer to the root.

6 B. WALTER

Example 3.10. Following is the map βσ for two different isomorphisms σ of the vertices of a rooted preLie
tree and leaves of a Lie tree. The different isomorphisms are indicated by numbering.

1

2
e1

3
e2

βσ17−−−→ β(e1) β(e2)

1 2 3
•
•

1

2
e1

3
e2

βσ27−−−→ β(e1) β(e2)

2 3 1

•

Above, sgn(βσ1
(ei)) = 1 and sgn(βσ2

(ei)) = −1, with pairings 〈R, T 〉σ1
= 1 and 〈R, T 〉σ2

= 0.

The σ-configuration pairing satisfies a property analogous to Proposition 3.6. Given an unlabeled preLie
tree R, write Rê

1 and Rê
2 for the rooted trees obtained by removing the edge e from R, numbered so that

the root of Rê
1 is the root of R and the root of Rê

2 is the vertex formerly incident to e. Also, given

σ : Vertices(R)
∼=
−→ Leaves(T) and a subtrees R′ of R and T ′ of T , set

〈
R′, T ′

〉
σ
=

{〈
R′, T ′

〉
σ|R′

if σ
(
Vertices(R′)

)
= Leaves(T ′),

0 otherwise.

Lemma 3.11. With the notation above
〈
R, [T1, T2]

〉
σ

=
∑

e∈E(R)

〈
Rê

1, T1
〉
σ

〈
Rê

2, T2
〉
σ

−
〈
Rê

2, T1
〉
σ

〈
Rê

1, T2
〉
σ

where
∑

e is a sum over the edges of R. Furthermore, at most one term in the above sum is nonzero.

Proof. Write σ−1Ti for the full subgraphs of R on the vertices σ−1Leaves(Ti). It is enough to prove that

〈
R, [T1, T2]

〉
σ
=

{
±
〈
σ−1T1, T1

〉
σ

〈
σ−1T2, T2

〉
σ

if σ−1Ti are connected,

0 otherwise

where the ± sign above depends on whether the root of R is in σ−1T1 or in σ−1T2.
If the σ−1Ti are connected then Definition 2 breaks up as claimed by straightforward combinatorics. In

this case Rê
1 and Rê

2 are σ−1T1 and σ−1T2.
If one of σ−1Ti is not connected, then βσ will not be a surjection, because there will be less edges in

σ−1Ti than internal vertices of Ti. In this case
〈
R, [T1, T2]

〉
σ
= 0 by definition. �

Given r ∈ PV and ` ∈ LV , write |r| and |`| for the underlying unlabeled rooted preLie and Lie trees of
r and `. Also, write lr : Vertices

(
|r|
)
→ Sr and l` : Leaves

(
|`|
)
→ S` for their labeling functions.

Proposition 3.12. For homogeneous r∗ ∈ (PV)∗ and ` ∈ LV , the configuration pairing of Definition 3.4
is equal to the following.

(3)
〈
r∗, `

〉
=

∑

σ:V(r)
∼=−→L(`)

〈|r|, |`|

〉
σ

∏

v∈V(r)

〈
lr(v)

∗, l`
(
σ(v)

)〉

where
∑

σ is a sum over all isomorphisms σ : Vertices(r) → Leaves(`),
∏

v is a product over all vertices
of r, and 〈lr(v)

∗, l`(σ(v))〉 is the canonical pairing of V ∗ and V . If there are no isomorphisms σ, then
〈r∗, `〉 = 0.

Proof. Rather than attempt to make Remark 3.8 explicit, to prove the proposition it is enough to note
that (3) matches Definition 3.4 when ` is a trivial Lie bracket and then apply strong induction on bracket
length using Proposition 3.6 and Lemma 3.11. �

Corollary 3.13. For r∗ ∈ (PV)∗ and ` ∈ LV homogeneous, written in terms of a chosen basis B of V ,
〈
r∗, `

〉
=

∑

σ:V (r)
∼=−→L(`)

label-preserving

〈
|r|, |`|

〉
σ
.

LIE ALGEBRA CONFIGURATION PAIRING 7

Corollary 3.13 combined with Proposition 3.18 gives an alternative to the recursive method of Propo-
sition 2.4 (applied in Example 2.5) for the calculation of 〈ψ, x〉. The proof of the following exam-
ple/application is left to the reader. (The following could also be proven using 2.4, but it is immediately
obvious using 3.13.)

Example 3.14. Suppose x is a right-normed bracket expression x = [a1, [a2, [. . . , [an−1, an]]]] and w is a
word w = w1 · · ·wn. Then 〈w∗, x〉 is a signed count of the number of ways that a1a2a3 · · · an can be written
as wσ(1)wσ(2) · · ·wσ(n−1)wk where σ is a shuffle of (1, . . . , k − 1) into (n, . . . , k + 1) with sign (−1)n−k.

In other words, reading w left-to-right should read x moving left-to-right skipping some letters and
then should read the skipped letters right-to-left. The sign comes from the number of times you move
right-to-left as in the examples below.

• 〈abcdef∗, [a, [f, [b, [e, [c, d]]]]]〉 = 1 [a, [f, [b, [e, [c, d]]]]]

• 〈abcdef∗, [f, [a, [e, [b, [d, c]]]]]〉 = −1 [f, [a, [e, [b, [d, c]]]]]

• 〈abcdef∗, [f, [e, [a, [c, [b, d]]]]]〉 = 0 [f, [e, [a, [c, [b, d]]]]]

• 〈abbab∗, [a, [b, [b, [b, a]]]]〉 = −3

[a, [b, [b, [b, a]]]] + [a, [b, [b, [b, a]]]] + [a, [b, [b, [b, a]]]]

There is a similar statement for left-normed bracket expressions.

3.3. Lie coalgebras via the preLie configuration pairing. Let
〈
ker(] · [)

〉
⊂ (PV)∗ be the smallest

coideal of (PV)∗ containing ker(]·[)\V ∗. We postpone the proof of the following until after Proposition 4.15.

Proposition 3.15. ker(ηp) =
〈
ker(] · [)

〉
. In particular, ker(ηp) is a coideal of (PV)∗.

Corollary 3.16. (LV)∗ ∼= (PV)∗/ker(ηp) as coalgebras.

Proposition 3.15 implies Proposition 2.7 (the analogous proposition for (TV)∗) in the following manner.

Definition 3.17. Let ip : (TV)∗ ↪→ (PV)∗ be the dual of the algebra homomorphism qp : PV � TV given
by qp

(
a1 / (a2 / · · · / (an−1 / an))

)
= a1a2 · · ·an and qp(r) = 0 for rooted trees r not of this form.

Recall that the rooted tree a1 / (a2 / · · · / (an−1 / an)) has a1 at the root, a2 above a1, a3 above a2, etc.
It is easy to check that ip is a coalgebra homomorphism for both the standard and the cobracket coalgebra
structures of (TV)∗ and (PV)∗.

Proposition 3.18. ηA = ηp ◦ ip.

Proof. The proposition is trivially true on elements of V ∗ ⊂ (TV)∗, where ip is merely the identity
map. Using strong induction on word length, applying Propositions 2.4 and 3.6, we get the result for all
homogeneous elements of (TV)∗. This implies the proposition for all of (TV)∗. �

Remark 3.19. The previous proposition is the dual of the statement pA = qp ◦ pp.

Corollary 3.20. Let ψ ∈ (TV)∗. Then ψ ∈ ker(ηA) if and only if ip(ψ) ∈ ker(ηp).

Proof of Proposition 2.7 assuming 3.15. Suppose that ker(ηp) is a coideal of (PV)∗ and let ψ ∈ ker(ηA).
By Corollary 3.20 ip(ψ) ∈ ker(ηp), so (ip ⊗ ip)

(
]ψ[
)
=]ip(ψ)[∈

(
ker(ηp)⊗ (PV)∗

) ⊕(
(PV)∗ ⊗ ker(ηp)

)
.

Applying Corollary 3.20 again gives]ψ[∈
(
ker(ηA)⊗(TV)∗

) ⊕(
(TV)∗⊗ker(ηA)

)
. This shows that ker(ηA)

is a coideal of (TV)∗.
For clarity, we write

〈
ker(] · [)

〉
A
and

〈
ker(] · [)

〉
p
for the coideal generated by ker(] · [) \ V ∗ in (TV)∗

and (PV)∗ respectively. Suppose that ker(ηp) =
〈
ker(] · [)

〉
p
and ψ ∈ ker(ηA). By the corollary ip(ψ) ∈

8 B. WALTER

ker(ηp) =
〈
ker(] · [)

〉
p
. Since ip is a coalgebra map, ip(ψ) ∈

〈
ker(] · [)

〉
p
if and only if ψ ∈

〈
ker(] · [)

〉
A
.

Thus ker(ηA) ⊂
〈
ker(] · [)

〉
A
. But ker(ηA) is a coideal, and by Proposition 2.4 it contains ker(] · [) \ V ∗.

Therefore ker(ηA) =
〈
ker(] · [)

〉
A
. �

Now we describe ker(ηp). Define the weight of a rooted tree to be its number of vertices. From
Example 3.3 we can read off ker(ηp) in low weights.

• In weight 2, ker(ηp) is given by replacing numbers by basis elements in the following expression.

(4)
1

2
+

2

1

• In weight 3, ker(ηp) is spanned similarly by the following.

(5)
1

2

3

+
2

1 3
and

1

2

3

+
2

3

1

+
3

1

2

Example 3.21. Other weight 3 expressions in ker(ηp) come from combining these. For example,

(6)
1

2

3

−
3

2

1

,
1

2

3

+
1

3

2

−
1

2 3
, and

1

2 3
+

2

1 3
+

3

1 2
.

Expression (4) is an anti-symmetry identity. The second expression of (5) is the Arnold identity. The
first expression of (5) is merely (4) with the new vertex 3 added above 2 . In general, ker(ηp) is local in
the sense that grafting rooted trees onto expressions in the kernel yields new kernel expressions.

Definition 3.22. Given rooted trees R, T and a chosen vertex v of R, the grafting of T onto R at v is
(R v/ T), the rooted tree given by adding an edge between the root of T and the vertex v of R.

Call a labeled rooted tree simple if its set of labels is linearly independent.

Proposition 3.23. Let r∗1+· · ·+r∗n ∈ ker(ηp) with ri weight m simple trees and let t ∈ PV be homogeneous.
Given vi ∈ Vertices(ri) all with the same label, (r1 v1/ t)

∗ + · · ·+ (rn vn/ t)
∗ ∈ ker(ηp).

If the roots of ri all have the same label, then for any vertex v of t, (t v/ r1)
∗ + · · ·+(t v/ rn)

∗ ∈ ker(ηp).

Proof. From Definition 3.9 of the σ-configuration pairing
〈
(rv/ t), `

〉
σ
=

{
±〈r, σ(r)〉σ 〈t, σ(t)〉σ

0
where

σ(r) is the subtree of ` containing the root and σ(Vertices(r)) and all of the paths from these leaves to the
root. Apply Corollary 3.13. �

Example 3.24. Grafting a new vertex 4 above 3 in the ker(ηp) elements of (5) and (6) yields the following
weight 4 ker(ηp) elements.

(7)

1

2

3

4

+
2

1 3

4

and

1

2

3

4

+
2

3

14

+
3

1

2

4

(8)

1

2

3

4

−
3

2 4

1

,

1

2

3

4

+
1

3

2 4

−
1

2 3

4

, and
1

2 3

4

+
2

1 3

4

+
3

1 24
.

Combining the first expressions in (7) and (8) above yields the weight 4 anti-symmetry expression:

1

2

3

4

+

4

3

2

1

.

LIE ALGEBRA CONFIGURATION PAIRING 9

Remark 3.25. The kernel of ηA does not have a local property such as this. For example, ab−ba ∈ ker(ηA);
however, abc− bac /∈ ker(ηA) and abc− bca /∈ ker(ηA). We may attach c after b in ab; but we cannot attach
c after b in ba without separating b and a.

Work in the next section implies the following.

Proposition 3.26. ker(ηp) is generated by graftings onto anti-symmetry (4) and Arnold (5) expressions.

Remark 3.27. The presence of roots in our trees makes the graftings of Proposition 3.23, and thus our
understanding of ker(ηp), more complicated. However, from the point of view of (LV)∗, roots should not
play a central role. For example combining the first weight 4 kernel expressions of (7) and (8) it follows
that modulo ker(ηp) the following are equivalent.

1

2

3

4

∼ −
2

1 3

4

∼
3

2 4

1

∼ −

4

3

2

1

Grafting vertices onto the above relations yields similar relations shifting the root to arbitrary vertices
of the weight n rooted tree (a1 / (a2 / · · · (an−1 / an))) modulo ker(ηp). Grafting onto these trees gives
relations moving the root to arbitrary vertices of a generic preLie tree.

In the next section we replace rooted trees with directed graphs. This removes the artificial (from the
point of view of (LV)∗) distinction of the root element.

4. The Configuration Pairing with Graph Coalgebras

4.1. Graph algebras. We begin by describing the graph algebra map, which takes a vector space and
makes an algebra. The graph algebra map is the free algebra map for a certain kind of algebra structure,
but we will not elaborate on this point of view until the appendix. Instead we present graph algebras as
a replacement for free preLie algebras. We show graph coalgebras contain preLie coalgebras in the same
way that the preLie coalgebras contain associative coalgebras; also the kernel of the map ηG from graph
coalgebras to lie coalgebras has particularly a simple description.

For brevity, we say “graph” to mean directed, acyclic, connected, nonplanar graph.

Definition 4.1. Let V be a vector space. Define GV to be the vector space of graphs with vertices labeled

by elements of V , modulo multilinearity. The graph product g ⊗ h 7−→
g

h
∈ GV is the bilinear map

defined on homogeneous elements as a sum over all of the ways of adding a directed edge from a vertex of
g to a vertex of h.

Example 4.2. Below is the graph product of the two graphs
a

b

c
and d

e .

a

b

c

d
e

= b

c

e

a d

+ b

c

e

a d

+ b

c

e

a d

+ b

c

e

a d

+ b

c

e

a d

+ b

c

e

a d

By a straightforward calculation, graph products satisfy Definition 3.1.

Proposition 4.3. GV is a preLie algebra.

Corollary 4.4. The bracket [x, y] =
x

y
−

x

y
makes GV a Lie algebra.

Remark 4.5. We show in the appendix that GV has more structure than just that of a preLie algebra.
Specifically it has extra, higher products which are not given by compositions of the binary product. In
fact, preLie algebras are graph algebras whose only nontrivial higher products are those generated by the
binary product.

10 B. WALTER

Since GV is a Lie algebra, there is a unique map pG : LV → GV sending trivial bracket expressions to

trivial graphs. Defined recursively this map is pG
(
[`1, `2]

)
=

pG(`1)

pG(`2)
−

pG(`1)

pG(`2)
. In the

appendix, we construct pG more generally via the universal enveloping graph algebra of a Lie algebra and
we show that pG : L→ UGL is an injection.

Example 4.6. Below is pG(`) for two simple Lie bracket expressions.

• [a, b] 7−→
a

b
−

a

b

• [[a, b], c] 7−→
a

b

a

b
−

c

−
a

b

a

b
−

c

=
(

a

b

c
+

a

b

c
−

a

b

c
−

a

b

c

)
−
(

a

b

c
+

a

b

c
−

a

b

c
−

a

b

c

)

4.2. Graph configuration pairing. As before, write (GV)∗ for the vector space dual. The induced
coalgebra structure on (GV)∗ cuts a graph at all edges, writing (source graph) ⊗ (target graph). Define

the cobracket to be the anti-commutative twist]g∗[=
∑

e∈E(g)

(gê1)
∗ ⊗ (gê2)

∗ − (gê2)
∗ ⊗ (gê1)

∗, where
∑

e is a

sum over the edges of g and gê1, g
ê
2 are the graphs obtained by removing edge e which went from gê1 to gê2.

We omit the proofs below which are identical to those of Section 3.

Definition 4.7. Define the vector space pairing 〈−,−〉 : (GV)∗ ⊗ LV → k by 〈γ, x〉 = γ
(
pG(x)

)
.

Let ηG : (GV)∗ → (LV)∗ be the map γ 7→ 〈γ,−〉.

Remark 4.8. ηG is the dual of pG as a map of vector spaces.
If V has chosen basis B, then the elements of (GV)∗ are uniquely written as formal linear combinations

of g∗ where g are graphs with vertex labels from B. In this case, 〈g∗, `〉 calculates the coefficient of g in
pG(`).

Proposition 4.9. If γ ∈ (GV)∗ then
〈
γ, [x, y]

〉
=
∑

i〈αi, x〉 〈βi, y〉, where]γ[=
∑

i αi ⊗ βi.

Corollary 4.10. The map ηG : (GV)∗ → (LV)∗ is a surjection of coalgebras.

Definition 4.11. Define βσ and 〈−,−〉σ for graphs as in Definition 3.9:

βσ

(
a

b
)
= root(a, b) and sgn

(
βσ

(
a

b
))

= ±1.

〈G, T 〉σ =
∏

e∈E(G)

sgn
(
βσ(e)

)
if βσ is surjective.

The following proposition connects to the configuration pairing of [13] and [14].

Proposition 4.12. On homogeneous elements, the graph configuration pairing is given by the following.

〈
g∗, `

〉
=

∑

σ:V (g)
∼=−→L(`)

〈|g|, |`|

〉
σ

∏

v∈V (g)

〈
lg(v)

∗, l`
(
σ(v)

)〉

Corollary 4.13. For r∗ ∈ (GV)∗ and ` ∈ LV homogeneous, written in terms of a chosen basis B of V ,

〈
g∗, `

〉
=

∑

σ:V (g)
∼=−→L(`)

label-preserving

〈
|g|, |`|

〉
σ
.

LIE ALGEBRA CONFIGURATION PAIRING 11

4.3. Lie coalgebras via the graph configuration pairing. We begin with the analog of Proposi-
tion 3.26. The following proposition appears in [12] as Proposition 1.6 and Theorem 1.8. Due to its
importance and simplicity, we include an outline of the proof.

Proposition 4.14. ker(ηG) is generated by local arrow-reversing and Arnold expressions of graphs:

(arrow-reversing)
a

b

+
a

b

(Arnold)
a

b

c
+

a

b

c
+

a

b

c

where a , b , and c are vertices in a graph which is fixed outside of the indicated area.

Proof. By a computation using Corollary 4.13, the above expressions are in ker(ηG).
To show that these span the entire kernel, note that modulo local arrow-reversing and Arnold, all

graphs are linear combinations of “long” graphs, of the form b1

···
, and recall that modulo

anti-symmetry and Jacobi all Lie brackets are linear combinations of right-normed Lie bracket expressions
[b1, [−, · · · [−,−]]] where b1 is a fixed generator. A short computation using Corollary 4.13 shows that the
“long” graphs above pair perfectly under 〈−,−〉 with right-normed Lie brackets. Since right-normed Lie
brackets span LV , arrow-reversing and Arnold expressions must span ker(ηG). �

The following is Propositions 3.7 and 3.18 of [13]. Its corollary is the main tool of [13].

Proposition 4.15. ker(ηG) =
〈
ker(] · [)

〉
. In particular, ker(ηG) is a coideal of (GV)∗.

Proof. By Proposition 4.14, to show that ker(ηG) is a coideal, it is enough to check that the cobracket of
the below arrow reversing and Arnold expressions land in

(
ker(ηG)⊗ (GV)∗

) ⊕(
(GV)∗ ⊗ ker(ηG)

)
.

a

b

+
a

b

and
a

b

c
+

a

b

c
+

a

b

c
.

Similarly, to show that ker(ηG) ⊂
〈
ker(] · [)

〉
it is enough to check that the above expressions are in〈

ker(] · [)
〉
. �

Corollary 4.16. (LV)∗ ∼= (GV)∗/ ker(ηG) as coalgebras.

Proposition 3.15 follows from Proposition 4.15 in the same manner as Proposition 2.7 in Section 3.3.

Definition 4.17. A graph G is rooted if it has a vertex v such that every edge of G points away from v.
In this case, call v the root of the graph G.

Define qG : GV � PV to be the algebra homomorphism converting rooted graphs to rooted trees by
forgetting edge directions (but remembering the root) and killing all non-rooted graphs.

Let iG : (PV)∗ ↪→ (GV)∗ be the dual of qG as a vector space map.

On homogeneous elements, iG(r
∗) = g∗ where g is the graph obtained by orienting each edge of the

vertex-labeled, rooted tree r to point away from the root. It is clear that iG is a coalgebra homomorphism
for both the standard and cobracket coalgebra structures on (PV)∗ and (GV)∗.

Proposition 4.18. ηp = ηG ◦ iG.

Remark 4.19. Proposition 4.18 is dual to the statement pp = qG ◦ pG.

Corollary 4.20. Let φ ∈ (PV)∗. Then φ ∈ ker(ηp) if and only if ip(φ) ∈ ker(ηG).

Proof of Proposition 3.15 assuming 4.15. This is identical to the corresponding proof in Section 3. �

12 B. WALTER

Proposition 3.26 follows from Proposition 4.14 using iG similarly. Combining Propositions 4.18 and
3.18, we have the following corollaries.

Corollary 4.21. ηA = ηG ◦ iG ◦ ip.

Corollary 4.22. Let ψ ∈ (TV)∗. Then ψ ∈ ker(ηA) if and only if (iG ◦ ip)(ψ) ∈ ker(ηG).

Example 4.23. Applying Corollary 4.22, parts of the ker(ηA) which were difficult to detect using shuffles are
now obvious. For example, a1a2a3a4a5 − a5a4a3a2a1 ∈ ker(ηA) because as a graph coalgebra expression,

(iG ◦ ir)(a1a2a3a4a5 − a5a4a3a2a1) = a1

a2

a3

a4

a5
− a1

a2

a3

a4

a5
is just four applications of

arrow-reversing.

Example 4.24. We get the shuffles inside of ker(ηA) via Corollary 4.22 in the following manner. Begin with
the arrow-reversing expression

(9)

a1

a2

a3

. . .

b1
b2

b3

. . .

+

b1

b2
b3

. . .

a1

a2

a3

. . .

Note that the Arnold identity implies the following.

(10)

a1

a2

a3

. . .

b1
b2

b3

. . .

∼ −

a1

a2

a3

. . .

b1
b2

b3

. . .

−

a1

b1

a2

a3

. . .

b2
b3

. . .

Reversing the arrows to a1 on the right-hand side above changes each sign. Iterating (10) beginning
with the first term of (9) yields all shuffles of (a1a2 · · ·) into (b1b2 · · ·) with first letter a1. Iterating (10)
beginning with the second term of (9) yields all shuffles with first letter b1.

Remark 4.25. Corollary 4.22 is the main component of [15] computing new bases for free Lie algebras.
The computation consists of a series of combinatorial moves as in the previous example.

Appendix A. Operad Structures

Operads are objects which encode algebra structures. On the set-level, they consist of an element for
every possible way of combining things using the algebra structure, along with “composition” maps ex-
pressing some combinations as compositions of others. More formally, a (unital, symmetric) operad O in
the symmetric monoidal category of k-vector spaces is a symmetric sequence of vector spaces, {O(n)}n≥0

where each O(n) has Σn-action, equipped with a unit k → O(0) and and equivariant composition maps,
O(n)

⊗
O(k1) ⊗ · · · ⊗ O(kn) 7→ O(

∑
i ki), satisfying standard unital and associativity axioms. The com-

position map tells which (
∑

i ki)-ary operation is given by combining k1,. . . ,kn-ary operations together
via an n-ary operation. The symmetric group action accounts for plugging elements into an n-ary op-
eration in different orders. Below we use ◦i operations to define operad structure. These are maps
O(n)⊗O(m) 7→ O(m+ n− 1) which plug an m-ary operation into an n-ary operation at position i.

• As . The associative operad is given by As(n) ∼= k[Σn] the regular representations of the symmetric
groups. Composition is given by wreath product.

• Lie. The Lie operad has Lie(n) given by the k-vector space generated by formal length n bracket
expressions of the elements a1, . . . , an. This is isomorphic to the k-vector space of rooted binary
planar trees whose leaf set is [n] = {1, . . . , n} (with Σn permuting [n]) modulo anti-symmetry and
Jacobi identites of trees.

LIE ALGEBRA CONFIGURATION PAIRING 13

• preLie. [1] The preLie operad is isomorphic to the operad of rooted trees. preLie(n) is the k-
vector space of rooted trees with vertex set [n]. The operad structure of preLie(n) comes from the
following ◦i operation. Direct the edges of a rooted tree to point away from the root. R ◦i T is
given by replacing vertex i of R with the tree T . The incoming edge to i (if i is not the root of R)
connects to the root of T , and we sum over all ways that the outgoing edges of i can be assigned
source vertices in T .

• Gr . The graph operad has Gr(n) given by the k-vector space of directed, acyclic graphs with vertex
set [n]. The operad structure on Gr comes from the following ◦i operation. G ◦i H is given by
replacing vertex i of G by the graph H , summing over all ways that edges with source or target
vertex i can be assigned a new source or target vertex in H .

Remark A.1. Write O∨ for the arity-wise dual of O: i.e. O∨(n) = O(n)∗. If O is an (arity-wise finitely
generated) operad, then O∨ is a cooperad. The dual cooperad structure of preLie∨ acts by quotienting
subtrees to vertices. The dual cooperad structure of Gr∨ acts by quotienting subgraphs to vertices, as
described in [13].

Proposition A.2. Gr is not a quadratic operad [5].

Proof. Count ranks as k[Σn]-modules. Gr(2) has rank 1 as a k[Σ2]-module. Gr(3) is spanned as a k[Σ3]-

module by , , and . However, a quadratic operad with O(2) of rank 1 cannot have O(3)

of rank > 2. �

There are quotient maps of operads Gr � preLie � As defined as follows.

• The map Qp : preLie � As is induced by the functor which views an associative algebra as a
preLie algebra. Qp takes rooted trees which are bivalent at all but two vertices to the permutation
encoded by the vertices from the root to the leaf, and quotients all trees with a vertex n-valent,
n > 2.

• The map QG : Gr � preLie is induced by the functor which views a preLie algebra as a graph
algebra (by viewing an operation encoded by a rooted tree as an operation encoded by a rooted
directed graph). QG takes rooted graphs to rooted trees, and quotients non-rooted graphs. [The
interested reader may check that this commutes with ◦i operations.]

There are inclusion maps of operads Lie ↪→ As , Lie ↪→ preLie, Lie ↪→ Gr defined as follows.

• The map UA : Lie ↪→ As is induced by the map viewing an associative algebra as a Lie algebra
with bracket [x, y] = xy − yx. This map is an injection by Poincaré-Birkhoff-Witt.

• The map Up : Lie ↪→ preLie is induced by the map viewing a preLie algebra as a Lie algebra with
bracket [x, y] = x/y−y /x. From definitions, it follows that UA = QpUp. Since UA is an injection,
so is UP .

• The map UG : Lie ↪→ Gr is induced by the map viewing a graph algebra as a Lie algebra with

bracket [x, y] =
x

y
−

x

y
. From definitions, it follows that UA = QpQGUG. Since UA is an

injection, so is UG.

References

[1] F. Chapoton and M. Livernet Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Not. 8:1–18, 2001.
[2] E.S. Chibrikov. A right normed basis for free Lie algebras and Lyndon-Shirshov words. J. Algebra, 302:593–612, 2006.
[3] Y. Félix, S. Halperin, and J.-C. Thomas. Rational homotopy theory, volume 205 of Graduate Texts in Mathematics.

Springer-Verlag, New York, 2001.

[4] M. Gerstenhaber The cohomology structure of an associative ring. Ann. of Math. 78:267–288, 1963.
[5] V.Ginzburg and M.Kapranov. Koszul duality for operads. Duke Math J. 76(1):203–272, 1994.
[6] M. Markl. Lie elements in pre-Lie algebras, trees and cohomology operations. J. Lie Theory. 17(2): 241–261, 2007.
[7] D. Quillen. Rational homotopy theory. Ann. of Math. (2), 90:205–295, 1969.

14 B. WALTER

[8] D.E. Radford. A natural ring basis for the shuffle algebra. J. Algebra, 58:432–453, 1979.
[9] C. Reutenauer. Free Lie algebras. London Math. Soc. Monographs New Ser., 7, Oxford Univ. Press, 1993

[10] M. Schlessinger and J. Stasheff. The Lie algebra structure of tangent cohomology and deformation theory. J. Pure Appl.
Algebra, 38(2):313–322, 1985.

[11] D.P. Sinha. The homology of the little disks operad. 2006, math/0610236.
[12] D.P. Sinha. A pairing between graphs and trees. 2006, math/0502547.
[13] D.P. Sinha and B. Walter. Lie coalgebras and rational homotopy theory, I: Graph coalgebras. 2007, math/0610437.
[14] D.P. Sinha and B. Walter. Lie coalgebras and rational homotopy theory, II: Hopf invariants. 2009, arXiv:0809.5084.
[15] B. Walter. The configuration basis of a Lie algebra and its dual. in preparation.

Department of Mathematics, Middle East Technical University, Northern Cyprus Campus, Kalkanli, Guze-

lyurt, KKTC, Mersin 10 Turkey

E-mail address: benjamin@metu.edu.tr

