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1. Introduction

My general area of research is algebraic topology. Broadly speaking, this means that I am interested in
connections between abstract algebra and topological spaces. Modern algebraic topology begins with the
attempt to classify all possible topological spaces by algorithmically constructing certain abstract groups
from each topological space. Manipulations of and relations between spaces translate into manipulations
of and relations between abstract groups. To capture different structural aspects, multiple constructions
moving between topological spaces and abstract algebraic objects have been identified. Questions about
structure or existence of topological spaces are translated via these methods to questions about structure
or existence of algebraic objects. We may also run reverse constructions – building topological spaces
from abstract algebraic objects. This allows us to convert algebraic questions into topological questions,
sometimes changing complicated algebraic problems into topological ones which are more tractable. Very
basic examples of this are the proofs that subgroups of free groups are free, as well as the fundamental
theorem of algebra.

My current research is divided into three projects. My primary project is continuing joint work with
Dev Sinha at the University of Oregon on Lie coalgebras and related structures in algebraic topology.
Related to this work, my second project is continuing work giving a new formulation of cooperads and
coalgebras in general symmetric monoidal categories – with particular applications in the categories of
ungraded ring modules and topological spaces. My third project is joint with Brian Munson at Wellesley
College constructing a “calculus of graph functors” which we hope to use to streamline computations of
chromatic numbers of graphs à la Babson and Kozlov. More long-term, I am interested in investigating
further a new, deep connection between topological spaces and algebraic objects via spectra hinted at by
recent work in Goodwillie’s calculus of functors and topological operads. The three projects above each
feed into this long term goal in a different manner.

Following is a very brief overview of these projects, with in-depth discussions in later sections.

1.1. Lie coalgebras and related structures in algebraic topology. My joint work with Dev Sinha
on Lie coalgebras and applications in topology began in late 2005. Our foundational work faced many
obstacles which have only recently been overcome. Now that the foundations are complete, a broad vista
of applications has opened.

In our first paper “Lie coalgebras and rational homotopy theory, I: graph coalgebras” we define a new
category of coalgebras which we call graph coalgebras, we introduce a new approach to Lie coalgebras as
quotients of graph coalgebras, and we apply this to classical rational homotopy theory. We show that
the Harrison homology functor from commutative algebras to Lie coalgebras naturally factors through
our category of graph coalgebras, and we use this factorization to explicitly display the duality between
Harrison homology and homotopy via a pairing of graphs and trees. Our work leads to a new view of
rational homotopy theory as well as a more computationally-friendly framework for Harrison homology
and Lie coalgebras.

In our second paper “Lie coalgebras and rational homotopy theory, II: Hopf invariants” we revisit the
geometry behind the Harrison/homotopy pairing of the first paper in order to give a new, geometric
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answer to the classical question “how can cochain data determine homotopy groups?” Explicitly we show
that graphs decorated by cochain elements give a complete set of homotopy functionals compatible with
Whitehead products, and we give a simple, geometric method for making calculations. Our work unifies
and generalizes constructions given by Boardman-Steer, Sullivan, Haefliger, Hain and Novikov, using our
graph coalgebraic viewpoint to incorporate both formalism and geometry.

Our work on graph coalgebras gives a radically different and highly computable view of an extremely
fundamental object, Lie coalgebras. Initial work indicates a number of fruitful applications and extensions
of our ideas ranging from rational homotopy theory with infinite fundamental group, to the word problem
in group theory, to a generalized Hopf invariant one question.

1.2. Cooperads and Coalgebras. Considering graph coalgebras and the graph cooperad has led me to
work on the foundations of cooperad theory. Operads are objects which encode algebra structures. For
example there operads Lie , Com, As encoding Lie, commutative, and associative algebra structure, as well
as A∞ and E∞ operads encoding homotopy associative and homotopy commutative algebra structure.
Recent work generalizes these notions to the topological setting and beyond. Dually, cooperads encode
coalgebra structures. That is, operads tell how things are multiplied, cooperads tell how they are factored.

Operad theory is aided by the fact that in all categories of interest, operadic composition is associa-
tive. However, the dual notion of cooperadic cocomposition is associative in almost none of the standard
categories of interest. One striking effect of this is the difficulty of describing general cofree coalgebras,
a question which has garnered interest in the theoretical computer science community (see e.g. work of
Berstel and Reutenauer and also Block and Griffin). In my paper “Cofree coalgebras over cooperads” I
lay foundations for a new approach to cooperad theory using an associative universal composition product
whose left and right Kan extensions give the operadic and cooperadic composition products. This is used to
give a new construction of cofree coalgebras over cooperads improving the existing constructions of Smith,
Fox, Hazewinkel, and Block-Griffin. Furthermore I give examples showing that my new foundations give
a relatively easy way to give explicit descriptions of cooperad structures and maps between cooperads and
make direct computations.

In further work, I plan to extend these constructions to give a new description of the cofree cooperad
functor, valid in the categories of ungraded ring modules and also topological spaces. This would yield
a new construction of the cooperadic cobar construction which preliminary calculations indicate would
extend that of Michael Ching in the topological setting. There are a number of further projects, in my
joint work with Sinha described above, and also investigating Goodwillie’s homotopy calculus of functors,
where such a construction could be useful.

1.3. Calculus of graph functors. My dissertation work was on Goodwillie’s homotopy calculus of func-
tors. In my dissertation I constructed a new homotopy calculus of functors in the rational homotopy
categories of differential graded commutative coalgebras and differential graded Lie algebras. In a similar,
joint project with Brian Munson at Wellesley College we are constructing a new calculus of graph functors
(functors from the category of graphs to the category of topological spaces). Our goal is to use this calculus
of graph functors to streamline and better understand the method of Lovász generalized by Babson and
Kozlov in 2007 for computing bounds for chromatic numbers of graphs using algebraic topology. We have
currently solved about half of the problems required to complete our calculus of graph functors construc-
tion, and expect to be able to complete our work and have it ready for publication within the next year.
We expect our work to be of great interest both to homotopy theorists wanting to better understand Weiss’
and Goodwillie’s calculi of functors and to applied mathematicians and computer scientists interested in
chromatic numbers of graphs.

2. Lie coalgebras and related structures in algebraic topology

2.1. A brief introduction to Lie coalgebras and generalized Hopf invariants.
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Definition 2.1. Let V be a vector space. Define G(V ) to be the span of the set of oriented acyclic graphs
with vertices labeled by elements of V modulo multilinearity in the vertices. G(V ) has an anti-commutative
coproduct given by ]G[ =

∑

e(G
ê
1 ⊗ Gê

2 − Gê
2 ⊗ Gê

1), where e ranges over the edges of G, and Gê
1 and Gê

2

are the connected components of the graph obtained by removing e, which points to Gê
2. For example,
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)

.

We call G(V ) the cofree graph coalgebra on V . The number of vertices in a graph is called its weight.
Graph coalgebras pair with non-associative binary algebras via the configuration pairing between oriented
acyclic graphs and binary trees described below.

Definition 2.2. Given G and T , an oriented acyclic graph with vertices V = {1, . . . , n} and a binary tree
embedded in the upper half-plane with leaves L = {1, . . . , n}, define

βG,T :
{
edges of G

}
−→

{
internal vertices of T

}

by sending an edge from vertex i to j in G to the vertex at the nadir of the shortest path in T between
the leaves i and j. Use βG,T to define the configuration pairing of G and T by

〈
G, T

〉
=







∏

e an edge
of G

sgn
(
βG,T (e)

)
if β is surjective,

0 otherwise

where sgn
(
βG,T (e)

)
= ±1 depending on whether the direction of e agrees with the ordering of the leaves

of T induced by its planar embedding.

Example 1. Following is the map βG,T for two different binary trees T .

1

2

3

e1
e2 7−→ β(e1) β(e2)

2 1 3
•
•

1

2

3

e1
e2 7−→ β(e1) β(e2)

1 3 2

•

In the first example, sgn
(
β(e1)

)
= −1 and sgn

(
β(e2)

)
= 1. In the second example, sgn

(
β(e1)

)
= 1 and

sgn
(
β(e2)

)
= −1.

The configuration pairing is so named because it naturally arises in the cohomology-homology pairing
for configuration spaces. The graph coproduct and binary algebra product are dual in the configuration
pairing. Further, the kernel of the configuration pairing is precisely the Jacobi and anti-symmetry subspace
on the binary algebra side, and the “Arnold and arrow-reversing” subspace on the graph coalgebra side.

Definition 2.3. Define E(V ) to be the quotient of G(V ) by Arn(V ), where Arn(V ) is the subspace
generated by arrow-reversing and Arnold combinations of graphs:

(arrow-reversing)
a

b

+
a

b

(Arnold)
a

b

c
+

a

b

c
+

a

b

c

Above a, b, and c are vertices of a graph which is fixed outside of the indicated area.

Theorem 2.4 (Sinha and W—). If V is graded in positive degrees, then E(V ) is isomorphic to the cofree

Lie coalgebra on V , with the graph coproduct on G(V ) descending to the Lie cobracket on E(V ).
Indeed, if V and W are linearly dual, then the configuration pairing gives a perfect pairing between E(V )

and the free Lie algebra on W with graph coproduct dual to Lie bracket.
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Definition 2.5. Let (A, dA, µA) be a one-connected differential graded algebra. The graph coalgebraic

bar construction G(A) is the total complex of
(
G(s-1Ā), d̃A, dµ

)
. Here s-1Ā is the desuspension of the

ideal of positive-degree elements of A, d̃A is the extension of dA by Leibniz, and dµ(g) is a sum contracting
each edge of g in turn, multiplying endpoints.

If A is commutative, the Lie coalgebraic bar construction E(A) is the quotient G(A)�Arn(s-1Ā).

Theorem 2.6 (Sinha and W—). E(A) is well defined and gives a model for the Harrison complex, or equiv-

alently the André-Quillen homology of a commutative algebra. Thus, these constructions factor through

the category of graph coalgebras.

The origin of these graph complexes was the study of generalized Hopf invariants. Let X be a simplicial
set, A(X) be the PL-forms on X , E(X) = E(A(X)), and Hn

E (X) = Hn(E(A(X))). Define G(X) and Hn
G (X)

similarly.

Lemma 2.7. Hn−1
E

(Sn) is rank one, generated by a weight one cocycle.

Definition 2.8. Given a cocycle γ ∈ En−1Sn we let τ(γ) ≃ γ be any cohomologous cocycle of weight one.
Call τ(γ) a Hopf cocycle associated to γ.

Write
∫

E(Sn)
for the map from cocycles in En−1(Sn) to Q given by

∫

E(Sn)
γ =

∫

Sn
τ(γ).

Lemma 2.9. The map
∫

E(Sn) is well defined and induces the isomorphism Hn−1
E

(Sn) ∼= Q.

Definition 2.10. Given a cocycle γ ∈ En−1Sn and f : Sn → X , the Hopf invariant ηγ(f) of f with respect
to γ is

∫

E(Sn) f∗(γ).

Just as E factors through graph coalgebras, so too does
∫

E(Sn)
factor through

∫

G(Sn)
(which is defined

in the same way as 2.8). In practice we compute Hopf invariants by picking graph representatives and
calculating ηG

γ (f) =
∫

G(Sn)
f∗γ.

Example 2. Let ω be a generating 2-cocycle on S2 and f : S3 → S2. The graph γ = −
ω

ω

is a cocycle

in G(S2) with f∗γ = −
f∗ω

f∗ω

. Because f∗ω is closed and of degree two on S3, it is exact. Let d−1f∗ω be

a choice of a cobounding cochain. Then

d

(

d−1f∗ω

f∗ω
)

=
f∗ω

f∗ω

+
(
d−1f∗ω ∧ f∗ω

)
.

Thus f∗γ is homologous to d−1f∗ω ∧ f∗ω. The corresponding Hopf invariant is
∫

S3 d−1f∗ω ∧ f∗ω, which
is the classical formula for Hopf invariant given by Whitehead in 1947.

The formulae get more complicated in higher weights, but they are still computable and have the same
basic ingredients – pulling back cochains, taking d-1 and products. In particular, if γ is defined using
Thom forms of disjoint submanifolds Wi of a manifold X , then ηγ(f) is a generalized linking number of
the f−1(Wi).

Theorem 2.11 (Sinha and W—). Let X be simply connected. Then the map Hn
E (X) → Hom

(
πn+1(X), Q

)
,

which sends γ to the Hopf invariant associated to γ, is an isomorphism of Lie coalgebras. Furthermore the

map above is descended from a coalgebra map Hn
G (X) → Hom

(
πn+1(X), Q

)
.
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2.2. Future work. First, we plan to extend our approach to rational homotopy theory beyond the simply
connected setting in characteristic zero. In preliminary calculations, it seems that our techniques will apply
beyond the nilpotent setting, possibly even to infinite fundamental groups (extending work of Gómez-Tato,
Halperin, and Thomas). Further, applying our techniques to K(π, 1)’s could yield new insight into the
lower central series and a new algorithm to attack the word problem for residually nilpotent groups. Hopf
invariants in this case can be understood as a sort of “generalized linking number” of elements.

A second area of inquiry is the deeper setting of characteristic p. The main starting point for our Lie
coalgebraic approach to homotopy theory was studying explicit Hopf invariants, and realizing that their
values on Whitehead products were governed by the same pairing as governs the homology and cohomology
of ordered configuration spaces, a phenomenon explained by iterated loopspace theory. At p, loopspace
theory leads to studying the pairing between the cohomology and homology of symmetric groups.

Another closely related problem is our generalization of the Hopf invariant one question. Hopf invariants
over the integers are defined for any space and give a full rank subgroup of Hom

(
πn(X), Z

)
. Calculating

the cokernel of the inclusion of this subgroup generalizes the classical Hopf invariant one question and
could help us connect our approach in characteristic zero to topology in characteristic p.

3. Cooperads and coalgebras

3.1. Universal compositions and cofree coalgebras. Fix a symmetric monoidal category (C,⊗), and
write Σ∗ for the category whose objects are surjections S ։ ∗ from a finite set to a singleton set and whose
morphisms are compatible set isomorphisms (note: this is equivalent to just the category of finite sets and
set isomorphisms, which is equivalent to the symmetric groups viewed as a category). Write Σ∗ ≀ Σ∗ for
the category of whose objects are set surjections S1 ։ S2 ։ ∗ and whose morphisms are compatible set
isomorphisms. More generally write the iterated wreath product Σ∗ ≀ · · · ≀ Σ∗

︸ ︷︷ ︸

n

for the category of surjections

S1 ։ · · · ։ Sn ։ ∗ and compatible set isomorphisms. There are functors Σ∗
≀n −→ Σ∗

≀m given by
composing surjections if n > m, and inserting isomorphisms if m > n. These fit together to give an
augmented simplicial category with extra degeneracies.

· · · Σ∗ ≀ Σ∗ ≀ Σ∗ ≀ Σ∗ Σ∗ ≀ Σ∗ ≀ Σ∗ Σ∗ ≀ Σ∗ Σ∗

The dotted, leftwards arrows above are sections of their neighboring solid rightwards arrows. Write γn for
the composition γn : Σ∗ ≀ · · · ≀ Σ∗ → Σ∗.

A symmetric sequence in C is a functor A : Σ∗ → C. Given two symmetric sequences A, B : Σ∗ → C, we
define their universal composition product A ⊚ B : Σ∗ ≀ Σ∗ → C by

(A ⊚ B)(S1
f
−→ S2

g
−→ ∗) = A(S2

g
−→ ∗)

⊗

(
⊗

s∈S2

B
(
f−1(s)

f
−→ {s}

)

)

.

We define A ⊚ B ⊚ C : Σ∗ ≀ Σ∗ ≀ Σ∗ → C and etc. similarly. Note that A ⊚ B is not again a symmetric
sequence. However we may construct a symmetric sequence from A⊚B by either left or right Kan extension
over γ2 : Σ∗ ≀ Σ∗ → Σ∗.

The left Kan extension Lkanγ2
A ⊚ B is the usual operadic composition product from the literature. In

this language, an operad is a symmetric sequence equipped with a natural transformation µ : (A ⊚ A) →
Aγ2 such that the two induced natural transformations µ(µ ≀ Id), µ(Id ≀µ) : (A ⊚ A⊚ A) ⇉ Aγ3 are equal.
Dually, a cooperad is a symmetric sequence with natural transformation ∆ : Aγ2 → (A ⊚ A) so that the
two induced natural transformations A γ3 ⇉ (A ⊚ A ⊚ A) are equal.

The universal composition product is associative, but its Kan extensions may not be. In most categories
of interest (e.g. ungraded ring modules and topological spaces), associativity is lost on right Kan extension;
though not on left Kan extension. Write A • B = Rkanγ2

(A ⊚ B), A • B • C = Rkanγ3
(A ⊚ B ⊚ C), etc.



6 BENJAMIN WALTER

In general A • (B • C) 6= (A • B) • C. However there are “parenthesization maps” from each of these to
A • B • C. Much of the difficulty of coalgebras can be traced directly to this point.

Using this framework I have proven a new method for building cofree coalgebras extending and simpli-
fying that of Justin Smith.

Theorem 3.1 (W—). Let C be a cooperad and V ∈ Ob(C). The cofree C-coalgebra on V is given by the

categorical limit of the diagram

C • (C • V ) C •
(
C • (C • V )

)
· · ·

C • V C • C • V C • C • C • V · · ·

3.2. Future work. My description of cooperads and coalgebras via universal composition products has
already proven useful in computations with the graph cooperad and its relationship with the Lie and
associative cooperads. Conceptually, it has proven convenient to be able to work on the other side of Kan
extension from the literature, and notationally it is much more clean to work with universal composition
products rather than the cooperadic composition product. Further this work leads to a clear understanding
of Michael Ching’s construction of the topological cooperadic cobar construction.

In this vein, I plan to continue a reorganization of cooperad theory around universal composition
products. In particular this leads to a new way of describing the cofree cooperad functor which can be
used for a topological operadic bar construction. Applications would include constructions useful for my
joint work with Sinha on Lie coalgebras, understanding the topological graph cooperad and its linear and
Moore duals, as well as revisiting the work of Ching understanding Goodwillie’s homotopy calculus of
functors.

4. Calculus of graph functors

4.1. Chromatic numbers via algebraic topology. By a graph G we will mean an undirected graph
with no multiple edges or loops. A graph map G → H is a map of vertex sets which preserves adjacency.
A graph has an n-coloring if its vertices can be colored with n colors such that no adjacent vertices are
colored the same. Note that an n-coloring of a graph G is equivalent to a graph map G → Kn to the
complete graph on n vertices. Write χ(G) for the minimal number of colors required to color G.

In 1978 Lovász constructed homology obstructions to the existence of maps G → Kn, and more recently
his work was generalized by Babson, Kozlov, and others through the introduction of a bifunctor Hom(−,−)
which assigns a topological space to a pair of graphs.

Definition 4.1. Let H be a graph. Define P(H), the power graph of H , to be the graph whose vertex
set is P0(V (H)) with an edge between S and T if an only if there is an edge between every element of S
and every element of T in H .

Given graphs G and H define the poset hom(G, H) to be the set of graph maps G → P(H) with poset
structure inherited from P(H).

Write Hom(G, H) for the realization of the poset hom(G, H).

Hom(−,−) is a bifunctor, contravariant in the first variable and covariant in the second. Babson
and Kozlov build obstructions to graph maps using functoriality of Hom(−,−) as follows. A graph map
f : G → Kn induces a map of spaces Hom(K2, f) : Hom(K2, G) → Hom(K2, Kn). Furthermore the
antipodal map on K2 gives a free Z2-action on the above spaces and makes Hom(K2, f) a Z2-equivariant
map. Considering Hom(K2, f) as a map of Z2-bundles, the generalized Borsuk-Ulam theorem tells us
that the image of the first nonvanishing Stiefel-Whitney class of Hom(K2, G)/Z2 must be nontrivial in
Hom(K2, Kn)/Z2. However by a direct computation, Hom(K2, Kn) is (n − 3)-connected.

Theorem 4.2 (Lovász). For any graph G, χ(G) ≥ connectivity
(
Hom(K2, G)

)
+ 3.



RESEARCH SUMMARY 7

There is nothing particularly important about the “test graph” K2 used above aside from it having a
free group action. Babson and Kozlov replaced it by the cyclic graph C2k+1 with the following result.

Theorem 4.3 (Babson and Kozlov). For any graph G, χ(G) ≥ connectivity
(
Hom(C2k+1, G)

)
+ 4.

In practice, the above constructions seem to give fairly sharp lower bound for chromatic numbers. The
main obstacle to quick chromatic number calculations appears to be that it is very computationally inten-
sive to extract connectivity information for general graphs. The work required to compute Hom(C2k+1, Kn)
above is a triumph of fearless combinatorial mathematics.

4.2. A calculus of graph functors. Brian Munson and I have begun the construction of a calculus of
graph functors approximating covariant functors F : Graphs → Top which are continuous in the sense that
the evaluation map Hom(G, H) × F(G) → F(H) is a continuous map. The functor Hom(K,−) is one such.
The construction of our calculus is inspired by Weiss’ orthogonal calculus of functors from vector spaces
to topological spaces which are continuous in the sense that mor(V, W) × F(V) → F(W) is continuous.
Our work relies on the fact that hom(−,−) is essentially an enrichment of the category of graphs over the
category of posets.

The end result of our work is, for every graph functor F , an approximating tower of fibrations of graph
functors · · · → P3F → P2F → P1F where the fibers all have a particular simple form, and going up the
tower better approximates good functors F in the sense that a natural transformation F → PnF becomes
highly connected. In this case, we should be able to read off connectivity information for Hom(K, G) from
the connectivity of the fibers in the bottom of the approximating tower of PnHom(K,−) evaluated at G.

Working analogous to Weiss, we have completed roughly half of the constructions required to reach
this goal. At present, we have worked out the universal property which should define the n-th polynomial
approximation PnF (which involves a poset-enriched homotopy colimit), we can show that polynomial of
degree n implies polynomial of degree n−1, and we can show that approximating towers for functors exist.
We have also completed the initial constructions towards understanding fibers of approximating towers.
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